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To face the "curse of dimensionnality" met in uncertainty quantification problems when the model has a high number of
random parameters, methods based on sparse approximation, likethe Least Angle Regression (LAR) method, should be used. In
this communication, we propose to extend the domain of applicationsof such methods and to apply them to quantify the impact
of uncertainty on a magnetoelectric sensor performances. The sensor response is represented by a 2D finite element model with 10
random parameters. A global sensitivity analysis is carried out in order to determine the most influential parameters.

Index terms—Non Instrusive methods, Least Angle Regression, UncertaintyQuantification, magnetoelectric effect, finite element
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I. I NTRODUCTION

Sensors based on the magneto-electric effect can measure
static magnetic fields with a very high sensitivity. The design
and the study of this device requires the use of a numerical
model [1]. The working principle of a magnetic field sen-
sor consists in combining magnetostrictive and piezoelectric
materials [2]. These materials present some uncertain char-
acteristics due to the manufacturing process deviations or
lack of quality controls. In a previous communication [3],
the influence of some of these parameters by using the Non
Intrusive Spectral Projection and the Monte Carlo simulation
have been investigated. These methods give similar resultsfor
a parameter number equal to 5 however the Non Intrusive
Spectral Projection method was the fastest one. The applica-
tion of the same method for a higher number of parameters
is not straightforward due to the "curse of dimensionality"
because the size of the polynomial basis to approximate
the sensor response becomes high. In this communication,
we propose other spectral approaches which can be applied
for numerical models with more uncertain parameters. These
approaches are derived from the method called Least Angle
Regression method [5]; We propose to apply these approaches
to a magneto electric sensor when 10 random parameters are
considered. Finally we calculate the first-order Sobol indices
to identify the most influential parameters.

II. M AGNETIC SENSOR

Figure 1 shows the magnetic field sensor is made with three
piezoelectric with in between two magnetostrictive layers. The
sensor input is the targeted static magnetic field. The output
is an electric voltagevac depending on the static field. The
numerical model of the magnetic field sensor is a 2D finite
element model.
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Fig. 1. Magnetoelectric sensor

The process of fabrication of such sensor is very compli-
cated, leading to a large dispersion on the characteristicsof
the materials [4]. We propose in the following to study the
influence of the dispersion of the material parameters on the
magnitude of the electric voltage. In the stochastic approach,
the uncertain parameters are modelled by random variables
that we assume to be independent and uniformly distributed.
We consider as random the permittivityǫmag, the permeability
µmag, the conductivityσ, the mass densityρmag, the Lamé
coefficientsµ∗

mag, λ∗

mag and the coupling coefficientβ of
magnetostrictive material. For the piezoelectric material, the
permittivity ǫpzt and the Lamé coefficientsµ∗

pzt, λ∗

pzt are
considered as random. The parameter variations have been
assumed to be of 20% onβ and 5% on the other material
parameters (µmag, µ

∗

mag, λ
∗

mag, ǫmag, β, σ, ǫpzt, µ∗

pzt, λ
∗

pzt).
In Tab I, we have reported the mean (m) and the standard
deviation (SD) of each parameter.

µmag β µ∗

mag λ∗

mag ǫmag

m 100 2.40E-5 3.85E+10 5.77E+10 5
SD 2.89 2.77E-6 1.12E+9 1.67E+9 0.6

ρmag σ ǫpzt µ∗

pzt λ∗

pzt

m 9200 1.72E+6 15 3.85E+9 5.77E+9
SD 265 4.97E+4 0.6 1.12E+8 1.67E+8

TABLE I
VALUE AND STANDARD DEVIATION OF RANDOM VARIABLES

III. L EAST ANGLE REGRESSIONMETHOD

The approach is based on the Least Angle Regression (LAR)
Method which an extension has been proposed by Blatman
et al [5] for problems with a high number of input random
variables in mechanical engineering.
Let consider a numerical modelY (u(θ)) where u(θ) is a
vector of N independent uniformly distributed random vari-
ables in the interval [-1,1]. We consider a sample of S
realizations of the input random variables and also the sample
of the corresponding output values. We denoteỸ (u(θ)) the
polynomial approximation ofY (u(θ)).

Y (u(θ)) ≈ Ỹ (u(θ)) =

Pout∑

i=1

αiΨi(u(θ)) (1)



We considerΨ = {Ψ1,Ψ2, ...,ΨPout
} the polynomial basis

of Pout terms. The value ofPout depends on the polynomial
expansion order P and the number of input random variables
N. Pout can be calculated by the following formula [6]:

Pout =
(N + P )!

N !P !
(2)

We can see that the number of terms increases exponentially
and can be quickly very high. For example, for a number of
parameters N=10 and an order P=4, the number of polynomials
is equal toPout = 1001.
The classical non intrusive method [6] approximates the out-
puts by a polynomial withPout terms. The LAR method
reduces the computation time by selecting a small number
of terms of the full polynomial basis having the greatest
impact on the output. We obtain then a sparse approximation.
The criterion for the selectionΨi(u(θ)) is based on the
maximization of the correlation between the current residual
and the predictorΨi(u(θ)).
Once the approximation is obtained, the Sobol indicesSα

based on the decomposition of the variance are calculated in
order to determine the most influential parametersu(θ) on the
output Y (u(θ)) [7]. The sum of the Sobol indices is equal
to one. All Sobol indices are positive. The first order Sobol
indicesSi enables to evaluate the influence of the inputui(θ)

on the variability of the outputY (u(θ)).

IV. RESULT

In order to evaluate the influence of the 10 input random
variables on the electric voltagevac (see Fig 1), we applied
the LAR method to obtain a sparse approximation ofvac.
Then, from this expansion, the first order Sobol indices are
calculated. We have applied LAR method with an increasing
number of realization S. In our case, we start to have a stable
result at S=200. Table II gives the Sobol indices obtained with
200 samples.

µmag β µ∗

mag λ∗

mag ǫmag

S1 0 0.56 0.24 0 0

ρmag σ ǫpzt µ∗

pzt λ∗

pzt

S1 0.2 0 0 0 0

TABLE II
FIRST-ORDERSOBOL INDICES WITH S=200

From the Table II, the first-order Sobol indices of the
coupling coefficientβ is the greatest indices, it means that
the coupling coefficientβ has the most impact on the electric
voltage variability.

V. I MPROVEMENT OFLAR METHOD

According Eq. (2), as the polynomial expansion orderP or
the number of random variablesM increases, even by using
LARs method, the computation time becomes too huge. One
way to improve the LARs method is to modify the polynomial
basis, so-called "primary basis" in the following, with which
the LARs process is applied. The first possibility is to use a
new definition of the polynomial order [5]. Assuming a weak
influence of the random variable interactions on the output,a

hyperbolic polynomial chaos basis is built up. For a given
order, the number of terms in a hyperbolic basis is much
smaller than in a classical basis where the polynomial order
in classical basis is defined by the sum of the monovariate
polynomial orders. Let consider aA, a non empty finite set
of indicesα. In the classical truncation polynomial basis, the
p-order setAM,p of M random variables is given by :

∣∣∣∣∣

M∑

i=1

αi

∣∣∣∣∣ < p (3)

The hyperbolic truncation proposes to determine a new set
AM,p

q :
∣∣∣∣∣

M∑

i=1

α
q
i

∣∣∣∣∣

1/q

< p (4)

With q a positive number which can be arbitrary fixed. For
a given value ofp, if q is lower than 1, the cardinal of
AM,p

q will be lower thanAM,p. The hyperbolic truncation
favors the monovariate polynomials of orders lower thanp

and multivariate polynomials with low indices [5].
In order to reduce the number of terms of the "primary" basis,
by using an error estimator, we propose a second approach
based on an iterative process. At the iterationi, the LARs
process is performed. An error is evaluated by using the
approximations obtained from the iterationi and i − 1. This
error estimator detects the polynomials to be added to the
"primary" basis of the iterationi. We jump to the next iteration
i + 1 by launching again the LARs process in this updated
"primary" basis and so on. These methods have been applied
successfully on academic examples. The comparison between
these different approaches on the magneto electric sensor will
be given in the extended version.

VI. CONCLUSION

In this communication, we have proposed several ap-
proaches based on the Least Angle Regression method to
study a magneto electric sensor with 10 parameters. These
approaches are simple to use and less time-consuming than
the Monte Carlo simulation method or Non Intrusive Spectral
Projection method.
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